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CHARACTERIZATIONS OF REAL LINEAR ALGEBRAS* 

By Anthony P. Cotroneo 
Langley Research Center 

SUMMARY 

Some characterizations and properties of linear algebras (or hypercomplex sys- 
tems) over the field of real numbers are presented with essential definitions and theorems 
concerning real linear algebras on which neither the commutative property nor the asso- 
ciative property of multiplication is defined. Theorems relating the concepts of normed, 
absolute valued, and division algebras are also given. 

In addition, algebras which are commutative o r  associative with respect to multi- 
plication a r e  considered. A construction of the algebra of real  quaternions is given with 
a proof of the classical result  of Frobenius which illustrates the unique place of complex 
numbers and quaternions among the algebras. Except for isomorphisms, the real  num- 
bers, the complex numbers, and the algebra of real  quaternions form the only associative 
division algebras over the field of rea l  numbers. 

The algebra of real quaternions is discussed in detail. It is shown that all automor- 
phisms on this algebra are of a specific type. These automorphisms form a group of 
linear orthogonal transformations which in turn define the group of all rotations on the 
real Euclidean vector space of dimension three. The technique of using quaternions to 
describe rigid-body rotations is especially useful in eliminating the singularitie s (gimbal 
lock) existing in the Euler angle rate equations. The illustrations presented point out 
many ways in which quaternions can be handled. 

INTRODUCTION 

The study of linear algebras (or hypercomplex systems) began with W. R. Hamilton's 
discovery of quaternions. Hamilton was then primarily interested in the solution of two 
problems : 

(1) Given an n dimensional vector space, is it possible to  define multiplication in 
such a way that the resultant system is a field ? 

*The information presented herein was submitted as a thesis in partial fulfillment 
of the requirements for the degree of Master of Arts, the College of William and Mary . in Virginia, Williamsburg, Va., 1965. 



(2) Can the product of two sums of n squares be expressed as a sum of 
n squares? 

Hamilton defined a quaternion to be a quadruple of real numbers with the operations 

and 

where 

He showed that all the axioms for a field were satisfied with the exception of the commu- 
tative law of multiplication. He was  also able to obtain the striking identity 

(Ql2 + cy22 + 92 + .142> (P12 + P Z 2  + P3 2 + P42) = (Y12 + Y 2 2  + Y32 + Y42) 

Hamilton's discovery led to a great deal of interest and study in the a reas  of both 
linear algebra and applied mathematics. In mechanics, for example, quaternions have 
proved to be a useful tool in the representation of rigid-body rotations. Therefore, the 
algebra of real  quaternions is treated in detail herein and should be particularly useful 
to individuals interested in the application of quaternions to describe rigid-body rotations. 

The objective of this paper is to present some characterizations and properties of 
both nonassociative and associative linear algebras over the field of real  numbers. Also 
included is a construction of the algebra of real  quaternions from the system of complex 
numbers. By use of quaternions, one can construct still another but l e s s  attractive 
algebra, the eight dimensional Cayley algebra. Because defining this system is very 
involved, the system of Cayley numbers has not been presented in this paper. For a 
discussion of the properties and a proof of the uniqueness of this system, the reader is 
referred to references 1, 2, and 3. 
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Many of the theorems discussed in this report are treated in the various refer- 
ences. Because of the author's interest in the application of quaternions to  rigid-body 
motion, this paper was written to  present a logical and formal organization of pertinent 
material dealing with this subject. 

GENERAL CHARACTERIZATIONS 

General characterization theorems of algebras over the field of real numbers are 
presented, with some definitions essential to  the presentation. 

Definition: Let A be a vector space of finite dimension n over the field R. 
Then A is a linear algebra of order n (or simply an algebra) if there is defined on A 
a product xy which satisfies the conditions 

d a y )  = ( 4 Y  = a(xy) (for a in R and x, y in A) 

(for x, y, z in A) 
x(y + z) = xy + xz 

(y + z)x = yx + zx 

If R is the field of real numbers, A is called a real algebra. Also, if A contains 
an element E such that E X  = XE = x for  all x in A, A is said to  be an algebra 
with identity and this element is denoted by "1." The definition does not assume commu- 
tativity or associativity of multiplication on the algebra A. 

From this definition is derived the following useful representation of a product 
in A. Let el, e2, . . ., en be a basis for A, and let 

x = x e  + x e  + . . . +  x e  1 1  2 2  n n  

and 

y = y l e l + y Z e 2 + .  . . + y  e n n  

be any two elements in A. Then 

n 
.i- 

xy = t xiyjeiej 
i , j = l  
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is an element in A. Therefore, 

n 
e.e. = 1 yijkek (i, j = 1 , 2 ,  ..., n; yijk in R) 
1 1  

k= 1 

so that 

n 
P 

(k = 1, 2, . . ., n) 

Thus, multiplication of elements in A is completely determined by n3 constants yijk. 

These constants a r e  called the structure constants of the system. Throughout this paper, 
R denotes the field of real  numbers and it is understood that A is of finite dimen- 
sion n. Also, to avoid confusion, in some instances a dot is used to indicate vector 
multiplication. 

Definition: Let A be a real algebra; A is said to  be absolute valued if there is 
afunction @ on A to R such that 

and 

for all x, y in A and a! in R. If these properties hold, @ is designated an abso- 
lute value function on A. If @(q) 6 $(x)@(y), A is said to be a normed algebra and 
$ is called a norm function on A. 

4 
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Theorem 1: Every real  algebra is a normed algebra. 

Proof: Let A be a real algebra having a basis el, e2, . . ., en. Multiplication 
on A is defined by 

k 

where the y.. ' s  a re  real. Now, let 
1Jk 

(i = 1, 2, . . ., n) i ui = cre 

for any nonzero real number CY. Then ul, u2, . . ., un forms a new basis for A such 
that 

and where 6.. = ayijk. Let 1Jk 

x = c xiui 
i 

and 

y = 1 y.u. 
J J  

j 

be any two elements in A; then 

where 
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Now choose a! suchthat  

1 
I6ijk( ' (i, j, k =  1, 2, . . ., n) 

so that 

Now define 

for every 

w = 1 wiui 
i 

in A. Since 

and 

4 is a norm function on A and clearly satisfies the remaining properties which must 
hold for a norm function. Hence A is a normed algebra and the proof is complete. 
This theorem is treated in reference 1. 

Definition: A is a division algebra if the equations ax = b and ya = b always 
possess solutions for a # 0. 

Theorem 2: Every real absolute valued algebra is a division algebra. 
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Proof: Let A be a real algebra with absolute value function @. For some a 
in A, define the mappings 

xRa = xa 

Ra : x - xa) and 

xLa = ax 

(or L a : x  -ax) for all x in A. Then Ra and La are linear transformations 
on A. If a #  0 and x # 0, then @(a) > 0 and @(x) > 0 implies that @(xa) > 0 and 
hence xa # 0. Therefore, if  a # 0, the null space of R, consists of the zero vector 
alone and similarly the null space of La consists of the zero vector alone. Hence, if 
a # 0, Ra and La a r e  nonsingular linear transformations on A. Thus, it follows 
that the equations xa = b and ax = b can be solved when a # 0. This theorem is 
discussed in references 1 and 4. 

Definition: Let A be an algebra and let P and Q be nonsingular linear trans- 
formations on A. The algebra A* whose elements a r e  those of A but whose product 
operation is defined by x * y = XP - yQ is called an isotope of A. Therefore, A 
and A* a r e  said to be isotopic. 

Theorem 3: If A is a real absolute valued algebra, then A has an absolute 
valued isotope with identity. Furthermore, the absolute value function of A is pre- 
served in its isotope. 

Proof: Let @ be an absolute value function defined on A. Since @(ax) = I a I @(x) 
for every real  a and x in A, there exists anonzero element E in A such that 
@(E) = 1. As before, since E # 0 and A is absolute valued, xRE = XE and xL, = E X  

define nonsingular linear transformations on A. Let x, z be any elements in A such 
that 

"RE -1 = Z  

Then 

x = zR, = ZE 

and 
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Similarly, 

Now define an isotope A* of A by 

x * y = X R ,  -1 *yL,  -1 

Since A and A* are the same linear spaces over R, the properties of @ involving 
addition and scalar  multiplication are preserved on A*. Also, 

for all x, y in A*. Therefore, A* is absolute valued and preserves the absolute 
value function of A. 

Finally, consider the product e 2  * y in A*. The product of two linear transfor- 
mations R and L is defined by 

x(R L) = (xR) - L 

for all x in A. Thus, 

for all y in A. In a similar fashion 

X * E 2 = x  

for  all x in A. Hence, e 2  is the identity of A*. Discussion of this theorem is 
given in reference 1. 

Definition: Let A be a real algebra with the basis el, e2, . . ., en. Denote the 
vector scalar product of 

x = x  e + x  e + .  . . + x  e 1 1  2 2  n n  

and 

y = ylel + y2e2 + . . . + y e n n  
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by <x, y>. The norm of the vector x is defined by 

2 2 <x, X> = N(x) = x1 + x22 + . . . + xn 

In the theorems which follow, use is made of the fact that the scalar product defines a 
nondegenerate and symmetric bilinear form on A - that is, 

<x, A> = 0 implies x = 0 

<x, y> = <y, x> for all x, y in A 

for  all real q and all x, y, z in A 
<ax + PY, z> = a<x, z> + P<Y, z> 

If A is not associative, then xn is not uniquely defined in A. Therefore, in 
order to give meaning to xn, define 

Lemma 1: Let A be a real  algebra such that N(xy) = N(x)N(y) for all x, y 
in A. If xn = xn-l 
integers k. 

x, where n = 2, 3, . . ., then N(xk) = N ( x ) ~  for all positive 

Proof by induction: Let x be any element in A. The lemma is obviously true 
for k = 1. Now let k be an arbitrary positive integer such that 

N(&) = N ( x ) ~  

Then, 

N(xk+') = N(xk x) = N(xk) N(x) = N(x) k N(x) = N(x)~+ '  

Hence, 

for all positive integers k. 

N( .") = N ( x ) ~  

9 



Theorem 4: Let A be a real  algebra with identity. If N(xy) = N(x) N(y) for all 
x, y in A, then A is absolute valued and the absolute value function defined on A 
is unique. 

Proof: Define 

for all x in A. Then 

@b + Y) = ax + yll = + /<x + y, x + y> 

so  that 

By use of the Cauchy-Schwarz inequality, 

and, hence, 

The remaining properties which must hold for @ to be an absolute value function 
are clearly satisfied and thus A is absolute valued. 

To avoid confusion between the identity in A and the identity in R, the identity 
in A is denoted by E .  Let E ,  e2, e3, . . ., en form a basis for A. If @ is an abso- 
lute value function on A, then 

and, hence, 

Now suppose @(x) is not unique on A. Then there exists an absolute value func- 
tion O(x) on A such that Q(a) # @(a) for some a #  0 in A. Therefore, either 
' @(a) o r  Q(a) < @(a). 

10 
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Consider first e(a) > +(a). If 

then 

Let 

yk = ylc + y2e2 + . . . + y,e, 

Also 

Furthermore, by lemma 1, 

2 2 1 = N(yk) = y1 + y22 + . . . + Y, 

which implies Since e is an absolute value function, 

and, hence, 

2 )  + . . . + O(en) e(y) 5 1 + e(e 

But this is impossible since B(y) > 1 and k is arbitrary. 

Therefore, the equation az = E can be solved whenever a # 0. Let y = (IaIIz; then 

k 

Now consider e(a) < +(a). Since A is absolute valued, it is a division algebra. 

But since 

e(a) e(z) = e(€) = 1 
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then 

and 

The rest of the proof for e(a) < @(a) proceeds exactly as that for e(a) > @(a) - that is, 
a contradiction is arrived at to the assumption that e(a) < @(a). Hence e(x) = @(x) for 
all x in A, so that &(x)  is unique. 

Lemma 2: Let A be a real  algebra such that N(xy) = N(x) N(y) for all x, y 
in A; then for all x, y and x', y' in A 

(1) <xY, X'Y> = <x, X'>N(Y) 

<xY, xY'> = N(X)<Y, Y'> 

(2) <xy, X'Y'> + <XY', X'Y> = 2<x, X'><Y, Y'> 

and 

Proof: It can easily be established that for all x, y in A 

1 
<X, Y> = z[N(X + y) - N(x) - N(yg 

Then 

Similarly, 

<XY, xY'> = N(x)<y, y') 

Theref ore, 

However, 
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Hence 

Now since 

<X(Y + Y'), X1(Y 4- Y')> = <xY, X'Y> + <xY, X'Y'> + <xY', X'Y> + <xY', X'Y'> 

then 

<xy, x'y'> + <xY', X'Y> = 2<x, X'><Y, Y'> 

This lemma is treated in references 4 and 5 and is used in  the proof of the next 
char act e rization the or em . 

Definition: Let A and B be algebras over a field F. A one-to-one mapping 
of A onto B is called an isomorphism of A onto B if the operations of addition 

and multiplication are preserved under the mapping - that is, 

for all a, b in A and q p in F. Algebras A and B a r e  said to be isomorphic 
if there exists an isomorphism of A onto B. By an automorphism of an algebra A is 
meant an isomorphism of A onto itself. If a mapping * is an isomorphism (or auto- 
morphism) except that 

+ is said to be an anti-isomorphism (or anti-automorphism). 

in A, x2y = x(xy) and xy2 = (xy)y. 
Definition: An algebra A is termed an alternative algebra if  for every x, y 

Theorem 5: Let A be a real algebra with identity 1. If N(xy) = N(x)N(y) for 
all x, y in A, then A is an alternative algebra with involution (anti-automorphism) 
I) : x - X such that 
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and 

x + X =  T(x).l (T(x) is real) 

Proof: Let I denote the subspace of A spanned by the identity and let I' 
denote its orthogonal complement. Then A is a direct sum of I and I* and is 
written A = I @ I' - that is, every x in A can be written as a-1 + a for some 
real  a and a in I . For a proof of this the reader  is referred to reference 6, 
page 157. 

I 

For x = a.1 + a in A, define Z =  a.1 - a and consider the mapping * : x -c X 
given by *(x) = X. Clearly 

It is now shown that 

If x' = 1 and x is taken in I', then by (2) of lemma 2 

<xY, Y'> + <XY', Y> = 2<x, O < Y ,  Y'> = 0 

for all y, y' in A. Also, by the law of multiplication defined on A, 

fo r  all real a. Thus, 

and 

<(x + a- l )y ,  y'> = <(a.l - x)y', y> 

fo r  all real a, x in IL and y, y' 
<wy, y'> = <y, Wy'> for all w, y, y' in A. Similarly, if y' = 1 and y is in I 
in (2) of lemma 2, <xz, x'> = <x, x'Z> for  all x, x', z in A. Combining these results 
gives, for all x, y, z in A, 

in A. Now, if w = 0.1 + x, then 
I 
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If x = 1, then <y, z> = <Z, y>. Therefore 

<xy, z> = <E, zy> 

Thus, 

<z, yx> - <E, xy> = 0 

which implies that yX= Xy and 

Now suppose that +(x) = +(y) for some x, y in A. Then, since +(a = x, 

Since + is an onto mapping, it defines an involution on A. 

The subspace I contains all those elements of A left fixed by the involution 
and I' contains all x in A such that +(x) = -x. Since +(xZ) =E, then XZ is 
in I, so  there exists a real number CY such that xE= a.1. Now, 

CY = a<l, 1> =  CY-^, 1> = <E, 1> = < ( l o x ) ,  X> = N(x) 

Hence xx= N(x)-1 for all x in A. Also, 

Finally, since x + x is left fixed by +, there is a real number 0 such that x + x = p.1. 
Now x + Z = T(x).l, where T(x) is a linear functional and is defined to be the trace 
of x. 

To complete the proof, it remains to show that the alternative law is satisfied for 
all elements in  A. From the first part  of this proof <xy, xz> = <y, ~ (xz ) )  for all 
x, y, z in A. But <xy, xz> = N(x)<y, z> from (1) of lemma 2. Hence, 

15 



This implies that ~ ( x z )  = (xZ)z. Since there exists some rea l  number p such that 
x + X = p.1, then 

Z(XZ) = (p.1 - x)(xz) = (p.l)(xz) - x(xz) 

and 

( S ) z  = p . 1  - XjJ z = (p.l)(xz) - x 2 z 

Hence 

x(xz) = x 2 z 

for all x, z in A. If <xz, yz> is considered, it can similarly be shown that 

xz2 = (xz)z 

for all x, z in A. Thus A is alternative and the proof is complete. This theorem is 
discussed in references 4 and 5. 

A direct consequence of this theorem is the following corollary. 

Corollary: Let A be a real algebra with identity 1 and let I denote the sub- 
space spanned by the identity of A. If N(xy) = N(x)N(y) for all x, y in A, then 
every element of A satisfies the quadratic equation x2 - T(x).x + N(x).l = 0 over I. 
Furthermore, the space I is the set of all elements left fixed by the involution 
+(x) = Z, whereas IL is the set of all a in A such that +(a) = a =  -a. 

The proof of the converse to this theorem depends on the validity of the Moufang 
identity on an alternative algebra - that is, 

for all x, y, z in A. In view of this, lemma 3 is presented and is of value in proving 
the converse to this theorem. Denote the set of all n-tuples of elements in A by An 
and make the following definitions: 

Definition: The associator of an algebra A is a function S defined on A3 
to  A by 

16 



"n) be a 
Definition: Let A be an arbitrary algebra and let f xl, x2, . . ., 

multilinear function defined on An to A. The function f is said to be skew- 
symmetric provided (1) f takes on the value 0 whenever at least two of its arguments 
a r e  equal, and (2) f changes sign whenever two of its arguments a r e  interchanged. 

tion K from A4 to A by 

( 

Lemma 3: Let A be an alternative algebra over a field F and define the func- 

f o r  all w, x, y, z in A; then S and K a re  linear skew-symmetric functions. 

Proof: The proof is contained in two parts. 

I. That S is linear in x is readily verified by expanding S ax1 + pX2, y, z) ( 
for any xl, x2, y, z in A and a, p in F. Similarly S is linear in y and z. It 
is also clear that S(x, x, y) = 0 = S(x, y, y) when A is an alternative algebra. There- 
fore, 

S(X, y + 2, y + 2) = S(x, y, 2) + S(X, 2, y) = 0 

and 

S(y + 2, y + 2, x) = S(z, y, x) + S(y, 2, x) = 0 

Thus 

Finally, 

S(X, Y, 4 = -S(X, z, y) = S(z, x, y) = -S(Z, y, x) 

Hence S is a linear skew-symmetric function from A3 to A. 

II. Now consider the function K. It is immediate that K is linear from the 
linearity of S. Also, from the definition of K, note that K(w, x, y, y) = 0. Therefore, 
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since 

K(w, x, y + z, y + Z) = K(w, x, y, z) + K(w, x, z, y) = 0 

Afunction G on A4 is now defined by 

By expanding all the associators it is found that G(w, x, y, z) = 0 and, therefore, 

Expanding G and K in te rms  of their associators and applying part  I of this lemma 
gives 

By use of 

it is found that a cyclic permutation of the elements z, w, x, y changes the sign on the 
right-hand side of the expression for -K(z, w, x, y) - that is, 

Thus, for  all w, x, y, z in A, 

and 

Since these two permutations of the elements w, x, y, z generate the entire symmetric 
group of permutations, the skew-symmetry of K has been proved. This lemma is 
treated in references 3 and 7. 

Lemma 3 is now used to  prove the converse to  theorem 5. 
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Converse: Let A be a real  algebra with identity 1. If A is an alternative 
algebra with involution + : x - Z, where a- = N(x)-1 and x + Z = T(x)=l (T(x) is a 
real number), then N(xy) = N(x)N(y) for all x, y in A. 

Proof: First prove the validity of the Moufang identity on A. It can be easily 
verified that 

(xy)(zx) = xfczx)] + S(X, Y, a) 

From lemma 3, 

S(X, y, ZX) = -S(ZX, y, X) = -S(X, y, X).Z - xS(Z, y, X) - K(z, X, y, X) 

and, therefore, 

Hence 

(xY)(zx) = x E Y d X ]  

X2Y + (*)Y = F(Tb).lj-JY 

for all x, y, z in A. Since x + X =  T(x).l for all x in A, then 

and 

x(xY) + X(ZY) = x p W + l ) Y ]  

[X(T(X)*lflY = T(X).(XY) = x [(T(X).l)Y] 

for all x, y in A. By the law of multiplication defined on A, 

Therefore, since A is an alternative algebra, 

( 3 Y  = X(ZY) 

Similarly, 
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For every x, y in A, 

By the Moufang identity 

and, hence, 

The converse to theorem 5 is discussed in references 4 and 5. 

COMMUTATIVE AND ASSOCIATIVE ALGEBRAS 

In the previous section the assumption of commutativity and associativity of multi- 
plication concerning real linear algebras was  ignored. In this section further character- 
izations and uniqueness of real linear algebras having these properties a r e  presented. 

Definition: A skew field is a ring in which the nonzero elements form a group 
under multiplication. A commutative skew field is called a field. 

Theorem 6: Let A be a real  division algebra. If multiplication on A is asso- 
ciative, then A is a skew field. (If, in addition, A is commutative with respect to 
multiplication, then A is a field.) 

Proof: If A is associative with respect to multiplication, then A is a ring. 
Let a, b be nonzero elements of A. Since A is a division algebra, there is an ele- 
ment x in A such that ax = b. Similarly, there is an element y in A such that 
by = x. Hence a(by) = ax = b. Since b # 0 and a(by) = (ab)y, it follows that ab # 0. 
Thus A has no nonzero divisors of zero. It can now be shown that A has an identity. 

that ac = a. Then E # 0. Now a e 2  = a€, which implies that e 2  = E since a is not a 
divisor of zero. Let x be any element in A. Then 

Let a be any nonzero element in A. There exists an element E in A such 

(x - XE)E = 0 
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and 

E(X - EX) = 0 

Hence XE = E X  = x, so that E is the identity element of A. As before, this element is 
denoted by 1. 

It is now shown that every nonzero element of A has a multiplicative inverse. 
Let a be any nonzero element of A. There exists an x in A such that ax = 1. 
Then x # 0. Furthermore, 

(xa - 1)x =  ax) - x = o 

Therefore, xa - 1 = 0 or xa = 1 and, hence, x is the inverse of a. It has been 
shown that the nonzero elements of A form a multiplicative group. Hence A is a 
skew field. Furthermore, if A is commutative with respect to multiplication, then A 
is a commutative skew field or  simply a field. This theorem is treated in reference 8, 
pages 18-21. 

It shall now be proved that except for isomorphisms, the real  and complex numbers 
form the only commutative division algebras over the real  numbers. As before, the 
space spanned by the identity of A is denoted by I. Since A is real, I is clearly 
isomorphic to the field of real  numbers. 

Definition: An element a in A is said to be in the center of A if  ax = xa 
for all x in A. 

Definition: Let A be a division algebra with identity 1 over a field F. A is 
said to be algebraic over a field K if (1) K is contained in the center of A, and 
(2) every element a in A satisfies a nontrivial polynomial with coefficients in K. 

In this and following theorems the center of A is denoted by C(A). 

Lemma 4: If A is a real  associative division algebra, then A is algebraic 
over I. Furthermore, each element of A satisfies a nontrivial linear or quadratic 
equation over I. 

Proof: Since A is an associative division algebra, A has an identity; since A 
is real, I is isomorphic to the field of real  numbers. Also, if  a is any real  number, 
then by the rule of multiplication defined on A, (a.l)a = a(clu.1) for all a in A. 
Thus I is contained in C(A). 

If A is of order n, the set of n + 1 elements (that is, 1, a, a2, . . ., an) a r e  linearly 
Since A is associative, the product of k factors a can be expressed by ak. 
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dependent with respect to R. Hence there exist real numbers cyo, cyl, . . ., an, not all 
zero, such that 

2 ao-l + ala + a2a + . . . + anan = o 

Therefore a is a root of an equation of degree 5 n with coefficients in I. If 

n p(x) = ao.1+ alx + . . . + anx 

and since I is isomorphic to  R, by the fundamental theorem of algebra 

k d n ,  and fi(x) is of degree 1 or 2. Since p(a) = 0, some fi(a) = 0 and thus a is 
a root of a linear or quadratic equation over I. This lemma is discussed in reference 9, 
page 10. 

Lemma 5: Let A be an associative division algebra over the field C of com- 
plex numbers. If A is algebraic over C* = (2.1, then A = C*. 

Proof: Since A is algebraic over C* and if a is any element of A, there 
exist complex numbers co, cl, c2, . . ., cn, not all zero, such that 

coal + cla  + . . . + cnan = 0 

Again, by making use of the fundamental theorem of algebra, the polynomial 

p(x) = co.l  + clx + . . . + cnxn 

can be factored into a product of linear factors - that is, 

P(X) = (X - hl* l ) (x  - X ~ . I ) ( X  - ~ ~ - 1 )  . . . (x - ~ ~ - 1 )  

where hl ,  X2, . . ., Xn are in C. Now since p(a) = 0, some 

a - X i . l  = 0 

Hence a is in C* and it has been shown that A C C*. Since A is algebraic 
over C*, C* C A. Therefore, A = C*. This lemma is treated in reference 6, 
pages 326-327. 
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Theorem 7: Let A be a real associative division algebra. If A is commuta- 
tive, then A is isomorphic to either the field of real numbers or the field of complex 
numbers . 

Proof: By lemma 4, A is algebraic over I and hence I, which is isomorphic 
to R, is contained in C(A). Suppose that I # A; then there exists an a in A which 
is not in I. Therefore, a satisfies some quadratic equation with real coefficients. 
Otherwise, a would be in I. Let 

p(x) = x 2 + 2a!x + a0.1 

such that p(a) = 0 and where a! and cr0 are real. Then 

For any x in A and y' in R, if x2 = y ' . l  and y' > 0, there is a r e a l  number y 

such that 

Then 

2 x2 - y - 1  = (x + y.l)(x - y.1) = 0 

which implies that x = yy.1. Hence cy2 - a0 < 0 for if this were positive, there would 
exist a y in R such that 

a +  0.1 = y y . 1  

However, th i s  implies that a is in I. Hence, there is a real  number p such that 
,2 - Lye= -p2 . Therefore 

2 2 (a+  0.1)  = - p  -1 

Thus, if a is in A but not in I, real  numbers a, p can be found such that 
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Set 

so that i' = -1 and, hence, A contains I + 1-i which is isomorphic to the field of 
complex numbers. This field is denoted by C*. It remains only to show that A = C*. 

Since A is algebraic over I, then A is algebraic over C*. If a in A satis- 
fies a polynomial with coefficients in I, then a clearly satisfies a polynomial with 
coefficients in C*. Also, C* C C(A) since A is commutative. Therefore, by 
lemma 5, C* = A and the proof is complete. This theorem is treated in reference 6, 
page 327. 

The property of commutativity on A is now dropped and the characterization of 
real division algebras which are associative is continued. 

Theorem 8: Let A be an associative division algebra. For some a contained 
in A, let Ra and La be the linear transformations on A such that xRa = xa and 
xLa = ax for all x in A. Then A is isomorphic to 

and anti-isomorphic to 

A ~ = ( L , I ~  in A} 

Proof: Define +(x) = % for all x in A and show that + defines an isomor- 
phism of A onto AR. First consider 

for x, y in A and a, p in R. Note that for any a in A 

Hence 

24 



so  that 

Now consider q(xy) = R For a in A, 
XY' 

Hence 

so that 

Finally, suppose Q(x) = +(y) and let a be any nonzero element in A. Then 
aR, = % so that a(x - y) = 0 and, since A is an associative division algebra, 
x = y. Therefore, since rc/ is an onto mapping, A is isomorphic to AR. 

Now consider the mapping V(x) = Lx. Note that for a in A, 

Hence 

so that V defines an anti-isomorphism from A onto AL. 

Thus, if A is an associative division algebra with basis el, e2, . . ., e, and if 

x = xlel + x2e2 + . . . + x e n n  

is any element in A, then 

X - X R  + x R  + . . . +  X R  
1 el 2 e2 en 
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under the mapping + and 

x - X L  + x L  + . . . +  X L  
el e2 en 

form a b a s i s f o r  AR and 

form a basis for AL. This theorem is treated in reference 10. 
Ren 

under the mapping +'. Therefore, Rel, Rea, . . ., 
Lel, Lea, . . ., L 

en 
pages 240-241. 

Theorem 9: Let A be a real associative division algebra; then the algebras AR 
and AL of linear transformations on A are isomorphic to algebras of real  n x n 
matrices. 

Proof: Let 

x = x l e l + x  e + .  . . + x  e 2 2  n n  

where xi is real and el, e2, . . ., en form a b a s i s  for A. Now xRa= xa is in A 
so that 

x R a = x a = y = y  e + y  e + .  . .+ynen  1 1  2 2  

and 

P 

eiRa = @..e 
13 j 

Now 

y = x ~ ,  = 1 xi C cYijej = C(C a. 1 3 1  .x)e j 
i j  j i  

and, hence, 

yj = 1 CY..x. 
1J 1 

with the matrix CY.. denoted by m Ra . Thus, the linear transformation Ra which ( 13) 0 
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I 

sends the vector x having components xl, x2, . . ., into the vector y having 
components yl, y2, . . ., can be represented by the real n X n matrix oc.. where 

( "n) 
( Yn) ( 13) 

The mapping O(RX) = m(Rx) for  all x in A is now shown to define an isomor- 

phism of AR onto M(AR) = {m(Rx) I Rx in AR}. 

in AR 
RY' First, note that for real a, p and Rx, 

since 

Suppose 

and 

then 

j 

Therefor e, 

which implies that 

= ((yij)(pjk) = m(Rx)*m(Ry) 
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that is, 

Hence 

Now suppose e(%) = ( ); then m(R, - Ry) = (0). If e RY 

m ( ~ x  - ~ y )  = (aij) 

each (Y.. = 0 so that 
1J 

ei(Rx - Ry) = ei(x - y) = 0 

which implies that x = y so that % = . Hence the mapping 0 is an isomorphism 
of onto M ( A ~ ) .  

RY 

Similarly, if 

M(AL) = {m(Lx) 1 Lx in AL} 

it can be shown that the mapping 8' defined by 

for  all x in A is an isomorphism of AL onto M AL . This subject is discussed 
in reference 10, pages 202-213. 0 

Corollary: Let A be a real  associative division algebra; then A is isomorphic 
to  the algebra M(AR) and anti-isomorphic to the algebra M AL . 

sentation of A and the anti-isomorphism A M A is called the second regular 
representation of A. 

0 
Definition: The isomorphism AT M AR) is known as the first regular repre- ( 

( L) 

Hence, given an associative division algebra A with basis el, e2, . . ., en, 
there is for any 

x = x e  + x e  + . . . +  xnen 1 1  2 2  
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in A the following correspondence: 

x - XIRel + x R + . . . + x R 
e2 en 

and 

x CL xlm(Rel) + x2 m(Rez) + . . . + xnm Re ( n) 

Similarly 

x - Lx - m( Lx) 

An example of a regular representation of the algebra of complex numbers is as 
follows: Let C denote the algebra of complex numbers. Then 1, i is a basis for C, 
so  that for any o! + pi in C 

o ! + @ - - o ! R l + p R i - o ! m  ( R 1 ) + p m ( R i )  

where m R is given by ( 1) 

lR1 = 1 + O i  

iR1 = 0 + i 

and m(Ri) is given by 

lRi = 0 + i 

iRi = -1 -t O i  

Therefore, 

Since C is a commutative algebra, the first and second regular representations of C 
are identical. 
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The algebra of real quaternions is constructed by imitating the construction of the 
complex numbers. Again, let C denote the algebra of complex numbers. 

Consider the set  Q of all ordered pairs  (a, b) where a, b are complex numbers. 
For all complex numbers a, b, c, d the operation of addition on Q is defined by 
(a, b) + (c, d) = (a + c, b + d). Scalar multiplication is given by c(a, b) = (ca, cb). Under 
the given operations, Q is a vector space over the field of complex numbers. Each 
(a, b) in Q can be expressed as 

(a, b) = a(1, 0) + b(0, 1) 

Multiplication on Q is defined as follows: 
- 

(a, b)(c, d) = (ac - db, da + bE) 

where the bar indicates the complex conjugate. 
1 = (1, 0). Lf j = (0, l),  then j 2  = -1. Now, every (a, b) in Q is uniquely expressible 
in the form 

The multiplicative identity is clearly 

(a, b) = a.1 + bj 

and the rule of multiplication on Q can be written as 

- 
(a.1 + bj)(c.l + dj) = (ac - db) -1 + (da + b q j  

Let a = a. + a l f i  and b = 3 + o!#, where ao, al, 3, cy3 are real; then, 

(a, b) = a.1 + bj = aO.l + ~ ~ ~ 0 . 1  + a2j + + f l j  

Let (n, 0) = i and (0, m) = k. Thus, each element (a, b) in Q is uniquely repre- 
sented in the form 

(a, b) = ao-1 + ali + aaj + a3k 

By this rule of multiplication is computed the following table which also defines multi- 
plication on Q: 

1 - 1  .2  - - 2  = k 2 = - 1  

i j  = - j i  = k 

jk = -ki = i 

k i =  -&= j 
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Under this rule of multiplication, 

is a real associative algebra with identity. The elements of Q are known as quater- 
nions and Q is called the algebra of real  quaternions. 

Theorem 10: The algebra of real  quaternions is an absolute valued algebra. 

Proof: Apply the converse to theorem 5. First, for  every q in Q define the 
quaternion conjugate of q by 

c =  aO.l - (ali e 02j + a3k) 

By simple multiplication it can easily be shown that the mapping +(q) = e defines an 
involution on Q. Similarly, it can be shown that q S = N(q).l for all q in Q. 
Finally, define T(q).l = q + for all q;  then T(q) is clearly real. Since Q is 
associative, N(pq) = N(p) N(q) and the proof is complete. 

This section is concluded with the following proof of the uniqueness of the algebra 
of real quaternions. 

Theorem 11: Let A be a real associative division dgebra.  If A is not commu- 
tative, then A is isomorphic to the algebra of quaternions. 

Proof: It is first shown that I = C(A). By lemma 4, I S C(A). Suppose there 
exists an element a in C(A) such that a is not in I. Then, as previously shown, 

there would exist real  numbers a, p such that (acF.')2 = -1. Thus, C(A) would 

contain a field C* isomorphic to the field of complex numbers. Hence, A would be 
algebraic over C* and therefore by lemma 5, A = C . This contradicts the assumption 
that A is not commutative. Therefore, I = C(A). 

* 

Let a be any element of A such that a is not in I and take i = 

such that i2 = -1. Then i is not in I so there exists an element b in A such 
that 

c = bi  - ib # 0 

Note that 

2 ic  + c i  = i(bi - ib) + (bi - ib)i = ibi - i b + bi2 - ibi = 0 
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so that ic = -ci. Furthermore, 

ic2 = (ic)c = -(ci)c = c(ci) = c2i 

so that c2 commutes with i. 

Now c satisfies some quadratic equation over I. Let 

c2 + yc + 6.1 = 0 

Since 

yc = -c2 - 6.1 

then yc commutes with i. Hence 

yci = iyc = yic = -yci 

and 2yci = 0. Since 2ci # 0 and A is a division algebra, y = 0. Therefore 
C2 = -6.1. Also c cannot be in I since ic = -ci. Hence 6 > O  so tha t  6 = t2 

. ( 5  real). 

Let j = 5. then j 2  = -1. Also, 
5’ 

ci + ic - 
5 

j i +  i j  = -- 

and, therefore, i j  = -ji.  Let k =  i j .  

Hence A contains the algebra C* + C*.j which is isomorphic to the algebra of 
real  quaternions. This algebra is denoted by Q*. 

Finally it is shown that Q* = A. Suppose Q* # A. Then for some x in A but 
not in Q*, an element 1 can be determined in A which is not in Q* and such that 
2 I = -1. Now i 5 I are roots of quadratic equations over I. For real cyl ,  a2, P1, Pa, 

let 

(i + Z) 2 + al(i + 1)  + a2*1 = 0 

and 
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I 

Hence 

2 (i + 2 )  = -2.1 + ii? + li = -al(i + 2) - a2.1 

and 

Adding gives 

(a1 + pl)i  + (al - pl)2 + (a2 + p2 - 4 ) * 1  = 0 

Since 1, i ,  2 are linearly independent, 

a1 = p1 = 0 

and, therefore, 

i2 + 2 i  = a-1 

Similarly, 

and 

Thus 

Then 

Multiplying by k gives 

j2 + 2 j  = p.1 

kl + 2k = y.1 

2k = (2i)j = (a.1 - L?)j = aj - i(p.1 - j2) = aj - pi + M 

2M = ye1 + pi - aj 

-22 = yk + p j  + ai 

(a real) 
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This result implies that 1 is in Q* and contradicts the assumption that Q* # A. 
Hence A = Q* and the proof is completed. This theorem is treated in reference 6, 
pages 327-329, and in  reference 4, pages 100-112. 

From some of the previous results the following corollary can be stated. 

Corollary: Let A be a real  associative absolute valued algebra. Then A is 
isomorphic to the real  numbers, to  the complex numbers, or t o  the real quaternions. 

THE ALGEBRAOFREALQUATERNIONS 

Let Q denote the algebra of real quaternions. 

Theorem 12: Let p be a fixed nonzero quaternion. Then e(q) = pqp-' is an 
automorphism on Q. Furthermore, every automorphism on Q is of this type. 

Proof: Since Q is an associative division algebra, every nonzero element of Q 
has  a unique inverse. Consider 

for all q in Q and some fixed nonzero element p. If ql, q2 a re  arbitrary elements 
in Q and ag p are real, then 

and, hence, 

Also 

so  that 

Finally, if 8 ql)  = 8(q2), then q1 = q2 since Q does not have any nonzero divisors 
of zero. Since 0 is an onto mapping, e is an inner automorphism on Q. 

( 
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Now suppose 8' is an automorphism of Q and let 

8" = q' 

Suppose that under the mapping 8' 

1-1 

i - e  1 

2 j -e 

k - e3 

then 1, el, e2, e3 obey the same rule of multiplication as defined for 1, i, j ,  k. There 
now exist elements pl, pz, p3 in Q such that 

p1 = e3j - e2k + e l  + i 

p 2 = e l k - e  3 i + e 2 + j  

p3 = e2i  - elj + e3 + k 

It is now shown that for every q in Q 

and 

q'p3 = P39 

where q' is the image of q under the mapping 8'. By using the previously described 
rule of multiplication on Q, 

elpl = -e2j - e3k - 1 + e l i  

and 

pli = -e3k - e j + eli - 1 2 
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so that 

Similarly, 

and 

Hence for every q in Q, 

and, similarly, 

and 

q'p3 = P39 

If one of the elements pl, p2, p3 is not zero, the proof of the theorem is complete. 

Now, suppose that 

P I =  P2 = 0 

then 

e l + i =  e2k - e3j 

Also 

p - e k - e i + e 3 e l - i k = e  3( e - i) + (e l  - i)k = 0 2 -  1 3 
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since 

then 

(el - i) = e3(el - i )k  = e2k + e3j 

From 

el + i = e2k - e3j 

is obtained 

i = - e  j 3 

which implies that e3 = k. Similarly, if 

P2 = P3 = 0 

then 

1 i = e  

and if 

P3 = P I =  0 

then 

j = e2 

Thus, if p1 = p2 = p3 = 0, then 8' must be the identity mapping and p = 1. This com- 
pletes the proof of the theorem. This theorem is discussed in reference 11, 
pages 257-259. 

Theorem 13: The collection of all automorphisms on Q form a multiplicative 
group of linear orthogonal transformations on Q. 
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Proof: Let G be the collection of all automorphisms on Q. By theorem 12, 
the elements of G are linear transformations of the form T where p is a fixed 
nonzero quaternion and 

P 

for all q in Q. First, note that G is closed under multiplication - that is, suppose 
pl, p2 are fixed nonzero elements of Q; then for any q in Q 

But 

P1 -l P2 -l = PIP2 - - P p p  ( 1 2)  = B2P1/N(P1P2) = (P2P1 j1  

and, hence, 

T T  - 
p1 p2 - TP2Pl 

so that G is closed. Similarly, 

for fixed nonzero elements pl, pa, p3 and q in Q. Thus G is associative. 

P 
Now, TI  is clearly in G. If T is any element of G and q is an arbitrary 

element of Q, then 

and, therefore, T1 is the identity in G .  Finally, since each element of G is a non- 
exists for each T in G. Hence G is amul t i -  linear transformation on Q, 

plicative group of linear transformations on Q. 

P 

-1 
TP P 

Note that for all q in Q and each T in G, 

Thus G is a group of linear orthogonal transformations on Q. 
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I 

As for theorem 5, note that 

where I is isomorphic to the field of real numbers. Furthermore, from the construc- 
tion of Q, IL is isomorphic to the real Euclidean vector space of dimension three. 
Denote IL by E3. Then every element in Q is of the form 

q = r + v  

where r i s i n  I and v in E3. 

Theorem 14: Let G be the group of all automorphisms on Q. Then (1) the ele- 
ments of I are invariant under the transformations of G and (2) G defines the group 
of all rotations on E3. 

Proof: That the elements of G leave the elements of I fixed is clear since 
each r in I is of the form a-1, where Q! is real. Thus, for each r in I and 
Tp in G, 

r T  = p(a!*l)p-' = r P 

and, hence, for any q =  r + v in Q and Tp in G, 

qTp = r + pvp -1 

Consider the effect of an element in G on an element of E3. Let 

p =  a0.1+ a l i+  a! j + a! k 2 3 

be any fixed nonzero element of Q, and let 

v = xi + yj + zk 

be an arbitrary element of E3. Then 

Expanding this expression shows that vT is in E3. Since Tp is an orthogonal P 
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transformation, T defines either a rotation on E3 o r  a rotation followed by a 
reflection on E3. Let 

P 

v' = x'i + y'j + z'k 

denote the vector in E3 such that 

VT = v '  
P 

From the expansion of vT 
transformation: 

results the following matrix representation d this P 

X 

"(q Y I- Z 

Let m(Tp) denote the matrix of the transformation T and let  
P 

Since the determinant of m(Tp) is given by 

det [Im (TpU = i1 

then 

det A(p) = , ~ N ( P ) ~  

Inasmuch as det A(p) is a polynomial in 'yo, cy1, a2, c y 3 ,  it is a continuous function 
from 
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to  R and is either always positive o r  always negative. That is, suppose there exist 
fixed nonzero quaternions p1 and p2 such that 

det A(pl) > 0 

and 

det A(p2) < 0 

Since 

is connected, it is shown by the intermediate value theorem (ref. 12, p. 322) that there 
exists a p3 in Q such that 

det A(P3) = +3(P3)3 = 0 

But this expression implies that p3 = 0 which is impossible since p3 = 0 is not in the 
domain of det A(p). Theref ore, 

det p(Tp)] = 1 

for all T in G or 
P 

detp(Tp,]  = -1 

for all Tp in G. Now consider T in G defined by P' 

p' = C r . 1  

Then clearly det A(p') = cy6 = +N(P')~ and is positive for a l l  transformations in G. 
Theref ore, 

det (Tp)] = +1 

for all Tp in G. Hence G is a group of rotations on E3. 

rotation on E3. 
It is now shown that G is the group of all rotations on E3. Let R denote any 

From analytic geometry R can be defined by the direction cosines of 
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the axis of rotation together with the angle of rotation about that axis. Let (, q, and 
denote the direction cosines of the axis of rotation with the X, Y, and Z axes, respec- 
tively. Also, let w denote the angle of rotation. Whittaker (ref. 13, p. 7) has shown 
that R has the following matrix representation: 

I w 2 sin gk< sin - w - V cos :) 
2 2 

2 sin yk sin -+ < cos y) 
2 

1 - 2 1 - v  s i n -  2 sin ' ( r l c  sin E+ 5 cos E) 
2 2 2 "1 ( 2 ,  2 ;  2 2 2 

2 sin 0 sin w - cos - 

2 sin - ( l e  W sin 2 - 5 cos f) 1 - ( 1  - c2)s',2; 
2 2 2 - "1 - 

W 2 sin gtc sin -+  q cos - 
2 2 

This matrix is precisely the matrix obtained when 

W 
@o = cos - 2 

w a l  = - 5  sin - 
2 

a2 = -q sin - 
2 
w 

and 

w a3 = -< sin - 
2 

a r e  substituted in the expansion of vT = pvp-1 previously given. Now ao, cyl, a2, cy3 

cannot all be zero since 
P 

2 2 2  ( + q  + <  = 1  

Thus, a fixed nonzero quaternion is found - namely, 

such that 

VT = v R  P 
Hence R is in G and the proof of the theorem is complete. 

42  



Corollary: The most general rotation of a vector v in E3 can be defined by 

vT = pvp-' P 

where 

w W p = cos - a 1  - sin -(ti + qj + ck) 
2 2 

5, 77, and c a r e  the direction cosines of the axis of rotation with the X, Y, and 
Z' axes, respectively, and w is the angle of rotation about the axis. 

CHARACTERIZATIONS OF QUATERNIONS 

Some of the properties and characterizations of Q which follow from the theorems 
of this paper are now given. 

(1) Multiplication on Q in Gibbs notation (see ref. 14, pp. 403-429): Let v v 
Then by the rule of multiplication 

C1) 21 
denote the vector c ros s  product of elements in 
defined on Q, it can readily be established that 

E3. 

Hence, for all q1 = r1 + v1 and q2 = r2 + v2, 

(b) 

The relationships (a) and (b) yield the following interesting identities: 

and 
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(2) By theorem 10, +(q) = Z i  = r - v is an involution on Q for all q = r + v 
in Q, being defined as the conjugate of q. Thus, 

T(q).l = q + S = 2 r  

N(q)-l  = qS= Sq 

a!p+ pp=CYfi+ fi  

and 

p4= 4P 

for all p, q in Q and real  q p. 

(3) First regular representation of Q: Let 

q = a  . I t a !  i + a !  j + a !  k 0 1 2 3 

For some p in Q the linear transformation Rp is defined by 

for all q in Q. Then from theorems 8 and 9 

q - %Rl + a l R i +  CY R +-  CY^% 
2 j  

and 

lRi = i = 0.1 + i + 0.j + Oak 

iR. = i2 = -1 + 0.i + 0.j + 0.k 
1 

j R ,  = j i  = 0.1 + 0.i + 0-j - k 

kR., = ki  = 0.1 + 0.1 + j + Oak 
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Thus, 

and, hence, 
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(4) Second regular representation of Q: In a manner similar to that for the first 
regular representation, 

and 

with L being defined by qL = pq for all q in Q. Thus, P P 

m(Li) = 

m(Lk) = 

-1 0 0  
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and, hence, 

“ 0  “1 “2 “3 

q-[:: -1; “2 -“1 1; -I$ “0 

-“3 

(5) Rotations: The Euler angles $, 8, q provide the most widely used technique 
for describing a rotation in Eg. Let Oxyz  denote a right-hand system of rectangular 
axes fixed in space and let  v denote any vector in this system. In theorem 14 it w a s  
shown that any rotation of v can be defined by 

1 VT = pvp- P 

where p is some fixed nonzero quaternion 

p = a! -1 + ali + a2j + a3k 0 

This rotation can also be described by three successive Euler angle rotations. 
relationship between the quaternion components ao, al, cy2, cy3 and the Euler angles 

IC/, 8, q is now derived. 

The 

Let RIC/,z denote a rotation of $ about the Z-axis ,  which rotates the Oxy. s y s -  

tem into the 0 system, and let 
x ly l z  

Then, by the corollary of theorem 14, there is a fixed nonzero quaternion p1 such that 

-1 VR = v T  =plvpl = v l  
$,z P1 

where 

IC/ 
2 2 p1 = cos --.1 - sin kk 
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Similarly, let 

such that 

v R  = v 2  1 B,Y1 

Then there exists a p2 in Q such that 

-1 v R = V  T = p2v1p2 = v2 
1 4 Y 1  1 P2 

where 

Finally, let 

e e p2 = cos -.1 - sin - j 
2 2 

Rq,x' : R ' Y I Z l  - Ox'y'z' 

such that 

~2Re,,i = V' 

Then, there is a p3 in Q such that 

v ~ R ~ , ~ ,  = v2TP3 = p3v2p3-l = v' 

where 

p3 = cos 9.1 - sin 9 i 
2 2 

into v' in 0 is given by 
X Y  Z 

The total rotation of a vector v in 0 
XYZ 

VT =pvp- l  =v' 
P 

where p is some fixed nonzero quaternion 

p = ao.l + ali + a2j + a3k 
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Since 

v' = P3P2(PlvP1-1)P2 -1 P3 -1 

then 

and, hence 

Expanding the right-hand side of this expression gives the following relationships between 
the quaternion components and Euler angles: 

a. = cos 9 cos 

al  = cos 9 sin - sin 

a2 = -cos 9 sin - cos 

a 3 =  - c o s 9 c o s g s i n k +  s i n 9 s i n i c o s k  

cos k +  sin 9 sin sin k 
2 2 2 2 2 2  

e - sin 9 cos g cos i! 
2 2 2  2 2 2 

e e - sin 9 cos - sin k 
2 2 2 2 2 2  

2 2 2  2 2 2 

The rotation of v into v' has the following matrix representation in te rms  of the 
Euler angles (ref. 15): 

cos +cos  0 cos 0 sin I,L 
- 

-sin 0 

cos + sin 0 sin cp - cos cp sin $ sin cp s in  0 sin + + cos +cos cp sin cp cos 0 

cos cp sin 0 cos ++  sin cp sin + cos cp s in  0 sin + - sin cp cos + cos cp cos 0 
- 

X :I Z 

Since the Euler transformation is identical to the quaternion transformation, the following 
additional relationships are easily determined: 

49 

I 



+ =  tan-1 

This subject has been discussed in detail in references 15 and 16. 

(6) Rate equations (see also refs. 15 and 16): Suppose that the system is 
rotating with an angular velocity w. Let 

2 ala2 - a a 0 3 )  ( 
2 2  (a; + CY1 - a2 - a;) 

w = pi + qj + rk 

where p, q, and r a re  the angular velocities about the X', Y', and Z' axes, 
respectively. The Euler angle rates a re  expressed as follows (ref. 15): 

The obvious disadvantage of this system of equations is the singularity existing at 

7T e = (2n - 1) 'z (n = 1, 2, . . .) 
It is now shown that no such problem exists in the corresponding rate equations for 

the quaternion components. Suppose that the quaternion q is a function of the scalar 
quantity t - that is, 

q = q(t) = w(t). l  + x(t)i + y(t)j + z(t)k 
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Then analogous to the definition of a derivative in the Euclidean vector space of dimen- 
sion three, define 

dq(t1- lim q(t + At) - q(t1 
dt -At-O A t  

or 

d d d d d - q(t) = - w(t). l  + - x(t)i + - y(t)j + - z(t)k 
dt dt dt dt dt 

From this expression it follows that 

&(9142) = ($ q$,, + .l($ q2) 

XYZ 
Now let T be the quaternion transformation rotating the vector v in 0 

P 
into v' in  0 , , , - that is, 

X Y  z 

-1 V' = v T  = pvp 
P 

where p and v a re  functions of t. 
angular velocity w as defined previously. Finally, define the quaternion 

Furthermore, let OXtYlZ,  be rotating with an 

h = ho.l + X l i  + h2j + h3k 

where 

Then 

and, also, 

(i = 0, 1, 2, 3) 
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From this relationship, the following matrix representation for T is obtained: P 

Xo + h3 - A1 "Xf - 

'('1'2 - '0'3) 
2 2 2 2  2 A A + "3x0) 

( 2 1  
A. + h2 - A3 - X1 

('2'3 ' O X l )  

From theoretical mechanics (ref. 17, pp. 141-146) is found the following 
relationship: 

(g)' = + [w, v'] 

(g)' denotes the vector dv - 
Xyz dt 

or fixed system and dv is avec tor  in the o where 

relative to the moving system O x l y l z f .  Hence in te rms  of the quaternion transforma- 
tion T the relationship can be expressed as 

dt 

P' 

Now, 

( z ) T p  = X [$ (h 'Ag  x = - 
dt 

Since AT= 1, 

Thus, 

Note that for any A in Q 

( $ A ) x =  r*+ v* 

where r* is in I and v* is in E3. Then, from (c) of property (1) is found 

[w, v g  = -2p, v g  
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or 

[w + 2v*, vg  = 0 

Since this expression is valid for all v' in E3 and since the vector c ross  product is 
nondegener at e , 

w =  -2v* 

Finally, 

* 1  
2 

v = -  

Again, since Ah= 1, 

v*= (& x)K 

Thus, 

or  

d 1 - = - - wx 
dt 2 

Expanding this expression gives the following matrix representation: 

- 1 
2 

_ - -  

- 

-rl 0 -P -q 

P 0 -r 

q r 0 

r -q P 

. -  

xO 

x1 

x2 

x3 . -  
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Equivalently, 

where 

- 1 - - -  
2 

h3 

xO x1 

-x2 1 Ill xO 

d 
dt 1 

hi = - A .  (i = 0, 1, 2, 3) 

Note that the substitution 

is equivalent to using vT = pvp-' and applying the constraint 
P 

p p =  N(p) = 1 

Normally, direction cosines a re  used to avoid the problem of gimbal lock. How- 
ever, this involves the three Euler angle differential equations being replaced by six 
direction cosine differential equations with three algebra equations and three constraints. 
On the other hand, representing rigid-body rotations with quaternions involves only four 
differential equations with one constraint. 

Some characterizations and properties of linear algebras over the field of real  
numbers are as follows: 

1. Every real  algebra is a normed algebra and every real  absolute valued algebra 
is a division algebra. 

2. Given a real absolute valued algebra without associativity of multiplication, one 
is not assured of the existence of an identity element. However, multiplication can be 
redefined in such a way that the resultant algebra is an absolute valued algebra with 
identity. 
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3. The algebra of real quaternions is a unique associative division algebra which 
is isomorphic and anti-isomorphic to algebras of real n X n matrices. 

4. The collection of all automorphisms on the algebra of real quaternions defines 
the group of all rotations on the real Euclidean vector space of dimension three. The 
advantage of representing rigid-body rotations with quaternions is in the elimination of 
the gimbal lock problem encountered when using Euler angles. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 14, 1966, 
125-23-02-04-23. 
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